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Modular Spoken Dialog System
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Word Confusion Network (Cnet)
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• Richer ASR hypothesis space than n-best list

• More compact data structure than speech lattices

• Every lattice can be converted to a cnet without signi�cant loss of

hypotheses (Mangu et al., 2000; ?)
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Contributions

• Propose to mitigate damage of ASR errors by using cnets

• First step towards tighter integration of ASR into end-to-end SDSs

• Novel algorithm to encode cnets via recurrent neural network (RNNs)

with gated recurrent units (GRUs) (?)

• Show that encoding cnets improves DST performance over ASR

1-best baseline
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Model
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embedding layer

dense layer with ReLU activation

confusion network GRU
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dt : one-hot vectors of system
dialog acts

wti : one-hot vectors of

word hypotheses in the cnet

timesteps of user utterances

Basis: Zilka and Jurcícek (2015)
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GRU-based Cnet Encoder

Encoding k alternative hypotheses at timestep t of a cnet:
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hti = zti · ht−1 + (1− zti ) · h̃ti
zti = σ(Wzxti + Uzht−1 + bz)

h̃ti = tanh(Whxti
+ Uh(rti · ht−1) + bh)

rti = σ(Wrxti + Urht−1 + br )

ht = fpool(ht0 . . . htk−1
)

Based on recent approaches to encode lattices via RNNs (Ladhak et al.,

2016; Su et al., 2017)
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Choices for the Pooling Function

average pooling : faverage =

∑k
i=1 hti
k

weighted pooling : fweighted =
k∑

i=1

scorei · hti , where scorei is the

con�dence score of cnet hypothesis xti
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Data

• Dataset of the second Dialog State Tracking Challenge (DSTC2)

[Henderson et al., 2014]: user interactions with restaurant domain SDS

• 1612 training, 506 development, 1117 test dialogs

• Dialog state: three goals: area (7 values), food (93 values),

price range (5 values); 8 requests (e.g. phone number, address)

• Train on manual transcripts + cnets, test on cnets

• Represent tokens of system dialog acts, manual transcripts, and 1-best

hypothesis as timesteps with single hypothesis

• Cnet preprocessing: 125 hypotheses in average cnet, but average
length of best hypothesis is only 4 tokens

→ remove interjections (uh, oh, . . . )
→ prune hypotheses with low scores
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Model Hyper-Parameters

parameter value

training epochs 20 (requests), 100 (food),

50 (area, price range)

optimizer Adam (?)

initial learning rate 0.001

training batch size 10 dialogs

λ of l2 regularization 0.001

dropout rate 0.5

embeddings pretrained 300-dimensional

PARAGRAM-SL999 embeddings

# units dense layer 300

# units GRU 100

size of the system and user

vector combination matrix

50
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Impact of ASR Errors on 1-best Baseline

test data goals requests

train on transcripts + batch ASR (baseline)

batch ASR 63.6 66.6
58.7 96.8 97.1

96.5

train on transcripts + live ASR (lower WER)

live ASR 63.8 67.0
60.2 97.5 97.7

97.2

transcripts 78.3 82.4
74.3 98.7 99.0

98.0

DSTC2 test set accuracy of 10 runs with di�erent random seeds in the

format average maximum
minimum

→ ASR errors strongly a�ect DST performance
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Results for the Cnet Encoder

method goals requests

1-best baseline 63.6 66.6
58.7 96.8 97.1

96.5

cnet - no pruning

weighted pooling 63.7 65.6
61.6 96.7 97.0

96.3

cnet - score threshold 0.001

average pooling 63.7 66.4
60.0 96.6 96.8

96.0
weighted pooling 65.2 68.5

59.1 97.0 97.4
96.6

cnet - score threshold 0.01

average pooling 64.6 67.9
59.7 96.9 97.2

96.5
weighted pooling 64.7 68.4

62.2 97.1? 97.3
96.9

DSTC2 test set accuracy of 10 runs with di�erent random seeds
?: signi�cantly better than baseline (p < 0.05)
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Conclusions

• ASR errors pose a major obstacle to accurate DST

→ Leverage richer ASR hypothesis space in cnets

• Novel method to encode cnets by GRU-based RNN: improves DST

performance over 1-best baseline

Future Work

• Compare cnet performance against n-best lists

• Explore further ways to leverage the cnet hypothesis scores
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