Parsing transcripts of speech

Andrew Caines¹, Michael McCarthy² & Paula Buttery¹ ¹University of Cambridge ²University of Nottingham

Speech-Centric NLP, 7 September 2017

- ▶ Speech (can be) very different from writing
- ▶ Put phonetics & prosody aside for now
- ▶ Focus on the transcribed form: lexis, morphology, syntax
- ▶ Most NLP tools trained on (newswire) written language
- ▶ How well do they cope with spoken data?

- ▶ Speech (can be) very different from writing
- ▶ Put phonetics & prosody aside for now
- ▶ Focus on the transcribed form: lexis, morphology, syntax
- ▶ Most NLP tools trained on (newswire) written language
- ▶ How well do they cope with spoken data?

- ▶ Speech (can be) very different from writing
- ▶ Put phonetics & prosody aside for now
- \blacktriangleright Focus on the transcribed form: lexis, morphology, syntax
- ▶ Most NLP tools trained on (newswire) written language
- ▶ How well do they cope with spoken data?

- ▶ Speech (can be) very different from writing
- ▶ Put phonetics & prosody aside for now
- \blacktriangleright Focus on the transcribed form: lexis, morphology, syntax
- ▶ Most NLP tools trained on (newswire) written language
- ▶ How well do they cope with spoken data?

- ► Speech (can be) very different from writing
- ▶ Put phonetics & prosody aside for now
- \blacktriangleright Focus on the transcribed form: lexis, morphology, syntax
- ▶ Most NLP tools trained on (newswire) written language
- ▶ How well do they cope with spoken data?

- Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs) (Moore et al. 2016 COLING)
- ► And disfluencies
 - ▶ FILLED PAUSES: um he's a closet yuppie is what he is
 - ▶ REPETITIONS: I played, I played against um
 - ▶ FALSE STARTS: You're happy to welcome to include it

(Moore et al. 2015 TSD)

► Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs)

(Moore et al. 2016 COLING)

► And disfluencies –

- ▶ FILLED PAUSES: um he's a closet yuppie is what he is
- ▶ REPETITIONS: I played, I played against um
- ▶ FALSE STARTS: You're happy to welcome to include it

(Moore et al. 2015 TSD)

► Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs)

(Moore et al. 2016 COLING)

- ► And disfluencies
 - ▶ FILLED PAUSES: um he's a closet yuppie is what he is
 - ▶ REPETITIONS: I played, I played against um
 - ▶ FALSE STARTS: You're happy to welcome to include it

(Moore et al. 2015 TSD)

► Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs)

(Moore et al. 2016 COLING)

- ► And disfluencies
 - ▶ FILLED PAUSES: um he's a closet yuppie is what he is
 - ▶ REPETITIONS: I played, I played against um
 - ▶ FALSE STARTS: You're happy to welcome to include it
- ► Features of conversation: turn-taking, overlap, co-construction, *etc*

► Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs)

(Moore et al. 2016 COLING)

- ► And disfluencies
 - ▶ FILLED PAUSES: um he's a closet yuppie is what he is
 - ▶ REPETITIONS: I played, I played against um
 - ► FALSE STARTS: You're happy to welcome to include it

(Moore et al. 2015 TSD)

► Fundamental difference: lack of sentence unit as used in writing; instead SPEECH-UNITS (SUs)

(Moore et al. 2016 COLING)

- ► And disfluencies
 - ▶ FILLED PAUSES: um he's a closet yuppie is what he is
 - ▶ REPETITIONS: I played, I played against um
 - ► FALSE STARTS: You're happy to welcome to include it

(Moore et al. 2015 TSD)

- ▶ In this work we compare 4 English corpora from Universal Dependencies 2.0 and Penn Treebank 3
 - ▶ PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ▶ UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE

- ▶ In this work we compare 4 English corpora from Universal Dependencies 2.0 and Penn Treebank 3
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ▶ UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE

- ▶ In this work we compare 4 English corpora from Universal Dependencies 2.0 and Penn Treebank 3
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ▶ UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE

- ▶ In this work we compare 4 English corpora from Universal Dependencies 2.0 and Penn Treebank 3
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ► UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE

- ▶ In this work we compare 4 English corpora from Universal Dependencies 2.0 and Penn Treebank 3
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ▶ UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE

Medium	Tokens	Types
speech	394,611*	$11,\!326^{**}$
writing	$394,\!611$	$27,\!126$

*sampled from 766,650 total **mean of 100 samples (st.dev=45.5)

Speech	Freq.	Rank	Writing	Freq.
Ι	46,382	1	the	41,423
and	$33,\!080$	2	to	$26,\!459$
the	$29,\!870$	3	and	$22,\!977$
you	$27,\!142$	4	Ι	20,048
that	27,038	5	a	$18,\!289$
it	$26,\!600$	6	of	18,112
to	$22,\!666$	7	in	$14,\!490$
a	$22,\!513$	8	is	10,020
uh	$20,\!695$	9	you	10,002
's	$20,\!494$	10	that	9952
of	$17,\!112$	11	for	8578
yeah	$14,\!805$	12	it	8238
know	14,723	13	was	8195
they	$13,\!147$	14	have	6604
in	$12,\!548$	15	on	5821

Speech	Freq.	Rank	Writing	Freq.
you know	11,165	1	of the	4313
it's	8531	2	in the	3702
that's	6708	3	to the	2352
don't	5680	4	I have	1655
I do	4390	5	on the	1607
I think	4142	6	I am	1500
and I	3790	7	for the	1475
I'm	3716	8	I would	1427
ΙI	3000	9	and the	1389
in the	2972	10	and I	1361
and uh	2780	11	to be	1318
a lot	2714	12	I was	1140

Speech	bpeech Freq. Rank		Writing	Freq.
VBP_PRP	$51,\!845$	1	NN_DT	48,846
NN_DT	$47,\!469$	2	NN_IN	$36,\!274$
ROOT_UH	39,067	3	NN_NN	$27,\!490$
IN_NN	$26,\!868$	4	NN_JJ	$21,\!566$
VB_PRP	$24,\!321$	5	VB_NN	$19,\!584$
ROOT_VBP	$24,\!156$	6	VB_PRP	$16,\!320$

► Used Stanford CoreNLP toolkit to parse CoNLL format treebanks

- ▶ PTB Switchboard Corpus of transcribed telephone conversations (SWB)
- ▶ UD English Web Treebank (EWT)
- ▶ UD English LinES (LinES), parallel corpus of English novels and Swedish translations
- ▶ UD Treebank of Learner English (TLE), subset of CLC-FCE
- ▶ We report unlabelled attachment scores (% tokens with correct heads)

- ► Used Stanford CoreNLP toolkit to parse CoNLL format treebanks
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ► UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - $\blacktriangleright\,$ UD Treebank of Learner English (TLE), subset of CLC-FCE
- ▶ We report unlabelled attachment scores (% tokens with correct heads)

- ► Used Stanford CoreNLP toolkit to parse CoNLL format treebanks
 - ► PTB Switchboard Corpus of transcribed telephone conversations (SWB)
 - ▶ UD English Web Treebank (EWT)
 - ► UD English LinES (LinES), parallel corpus of English novels and Swedish translations
 - \blacktriangleright UD Treebank of Learner English (TLE), subset of CLC-FCE
- ► We report unlabelled attachment scores (% tokens with correct heads)

Corpus	Medium	Units	Tokens	UAS
SWB	speech	102,900	$766,\!560$.540
EWT	writing	$14,\!545$	$218,\!159$.744
LinES	writing	3650	$64,\!188$.758
TLE	writing	5124	$96,\!180$.845

PARSING EXPERIMENTS

► What if we train instead on the *Wall Street Journal* + Switchboard?

- ▶ We used Stanford Parser to train PCFGs with max.40 and 80 token SUs
- ▶ And make these models available (future baselines?)

- ► What if we train instead on the *Wall Street Journal* + Switchboard?
- ▶ We used Stanford Parser to train PCFGs with max.40 and 80 token SUs
- ▶ And make these models available (future baselines?)

- ► What if we train instead on the *Wall Street Journal* + Switchboard?
- ▶ We used Stanford Parser to train PCFGs with max.40 and 80 token SUs
- ► And make these models available (future baselines?)

Model	SWB	EWT	LinES	TLE
CoreNLP	.540	.744	.758	.845
PCFG_WSJ_SWB_40	.624	.748	.760	.847
PCFG_WSJ_SWB_80	.624	.748	.760	.847

PARSING EXPERIMENTS

▶ Characterised speech vs writing differences

- Showed how unit length affects parsing of speech more than writing
- Demonstrated how much improvement can be made with a domain-appropriate parsing model
- +Speech parsing models available for other researchers: https://goo.gl/iQMu9w
- ▶ Call for more development of speech transcript treebanks.

- ▶ Characterised speech vs writing differences
- ► Showed how unit length affects parsing of speech more than writing
- Demonstrated how much improvement can be made with a domain-appropriate parsing model
- +Speech parsing models available for other researchers: https://goo.gl/iQMu9w
- ▶ Call for more development of speech transcript treebanks.

- ▶ Characterised speech vs writing differences
- ► Showed how unit length affects parsing of speech more than writing
- ► Demonstrated how much improvement can be made with a domain-appropriate parsing model
- +Speech parsing models available for other researchers: https://goo.gl/iQMu9w
- ▶ Call for more development of speech transcript treebanks.

- ▶ Characterised speech vs writing differences
- ► Showed how unit length affects parsing of speech more than writing
- ► Demonstrated how much improvement can be made with a domain-appropriate parsing model
- ► +Speech parsing models available for other researchers: https://goo.gl/iQMu9w
- ▶ Call for more development of speech transcript treebanks.

- ▶ Characterised speech vs writing differences
- ► Showed how unit length affects parsing of speech more than writing
- ► Demonstrated how much improvement can be made with a domain-appropriate parsing model
- ► +Speech parsing models available for other researchers: https://goo.gl/iQMu9w
- ▶ Call for more development of speech transcript treebanks.

▶ Analyse SUs with low UAS: what are the causes?

- ▶ Redefine grammar and grammaticality?
- ▶ Extra pre-processing: e.g. semantic chunking (Muszynska 2016 *ACL*)
- Or joint SU delimitation, disfluency detection, parsing (e.g. Honnibal & Johnson 2014 TACL; Yoshikawa et al 2016 EMNLP)
- ▶ Other metrics: e.g. SParseval (Roark et al 2006 *LREC*)

- ► Analyse SUs with low UAS: what are the causes?
- ▶ Redefine grammar and grammaticality?
- ▶ Extra pre-processing: e.g. semantic chunking (Muszynska 2016 *ACL*)
- Or joint SU delimitation, disfluency detection, parsing (e.g. Honnibal & Johnson 2014 TACL; Yoshikawa et al 2016 EMNLP)
- ▶ Other metrics: e.g. SParseval (Roark et al 2006 *LREC*)

- ► Analyse SUs with low UAS: what are the causes?
- ▶ Redefine grammar and grammaticality?
- \blacktriangleright Extra pre-processing: e.g. semantic chunking (Muszynska 2016ACL)
- Or joint SU delimitation, disfluency detection, parsing (e.g. Honnibal & Johnson 2014 TACL; Yoshikawa et al 2016 EMNLP)
- ▶ Other metrics: e.g. SParseval (Roark et al 2006 *LREC*)

- ► Analyse SUs with low UAS: what are the causes?
- ▶ Redefine grammar and grammaticality?
- ► Extra pre-processing: e.g. semantic chunking (Muszynska 2016 ACL)
- ▶ Or joint SU delimitation, disfluency detection, parsing (e.g. Honnibal & Johnson 2014 TACL; Yoshikawa et al 2016 EMNLP)
- ▶ Other metrics: e.g. SParseval (Roark et al 2006 *LREC*)

- ► Analyse SUs with low UAS: what are the causes?
- ▶ Redefine grammar and grammaticality?
- \blacktriangleright Extra pre-processing: e.g. semantic chunking (Muszynska 2016ACL)
- Or joint SU delimitation, disfluency detection, parsing (e.g. Honnibal & Johnson 2014 TACL; Yoshikawa et al 2016 EMNLP)
- ▶ Other metrics: e.g. SParseval (Roark et al 2006 *LREC*)

The End

- ► Acknowledgements:
 - ► Cambridge English Language Assessment
 - ▶ Sebastian Schuster & Chris Manning re UD corpora
 - ► SCNLP organisers
 - ▶ 3 anonymous reviewers
- Thank you! apc38@cam.ac.uk